Modular irreducible representations of the symmetric group as linear codes

نویسندگان

  • Adalbert Kerber
  • Axel Kohnert
چکیده

We describe a particularly easy way of evaluating the modular irreducible matrix representations of the symmetric group. It shows that Specht’s approach to the ordinary irreducible representations, along Specht polynomials, can be unified with Clausen’s approach to the modular irreducible representations using symmetrized standard bideterminants. The unified method, using symmetrized Specht polynomials is very easy to explain, and it follows directly from Clausen’s theorem by replacing the indeterminate xij of the letter place algebra by xj. Our approach is implemented in SYMMETRICA. It was used in order to obtain computational results on code theoretic properties of the p-modular irreducible representation [λ]p corresponding to a p-regular partition λ via embedding it into representation spaces obtained from ordinary irreducible representations. The first embedding is into the permutation representation induced from the column group of a standard Young tableau of shape λ. The second embedding is the embedding of [λ]p into the space of [λ], the p-modular representation obtained from the ordinary irreducible representation [λ] by reducing the coefficients modulo p. We include a few tables with dimensions and minimum distances of these codes, others can be found via our home page.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Monomial Irreducible sln-Modules

In this article, we introduce monomial irreducible representations of the special linear Lie algebra $sln$. We will show that this kind of representations have bases for which the action of the Chevalley generators of the Lie algebra on the basis elements can be given by a simple formula.

متن کامل

Linear codes with complementary duals related to the complement of the Higman-Sims graph

‎In this paper we study codes $C_p(overline{{rm HiS}})$ where $p =3,7‎, ‎11$ defined by the 3‎- ‎7‎- ‎and 11-modular representations of the simple sporadic group ${rm HS}$ of Higman and Sims of degree 100‎. ‎With exception of $p=11$ the codes are those defined by the row span of the adjacency matrix of the complement of the Higman-Sims graph over $GF(3)$ and $GF(7).$ We show that these codes ha...

متن کامل

Branching of Modular Representations of the Alternating Groups

Based on Kleshchev's branching theorems for the p-modular irreducible representations of the symmetric group and on the recent proof of the Mullineux Conjecture, we investigate in this article the corresponding branching problem for the p-modular irreducible representations of the alternating group A n. We obtain information on the socle of the restrictions of such A n-representations to A n?1 ...

متن کامل

Symmetry classes of polynomials associated with the dihedral group

‎In this paper‎, ‎we obtain the dimensions of symmetry classes of polynomials associated with‎ ‎the irreducible characters of the dihedral group as a subgroup of‎ ‎the full symmetric group‎. ‎Then we discuss the existence of o-basis‎ ‎of these classes‎.

متن کامل

The P-modular Descent Algebra of the Symmetric Group

The descent algebra of the symmetric group, over a field of non-zero characteristic p, is studied. A homomorphism into the algebra of generalised p-modular characters of the symmetric group is defined. This is then used to determine the radical, and its nilpotency index. It also allows the irreducible representations of the descent algebra to be described.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Eur. J. Comb.

دوره 25  شماره 

صفحات  -

تاریخ انتشار 2004